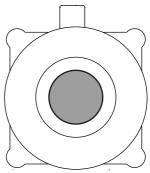


Hall open loop current sensor

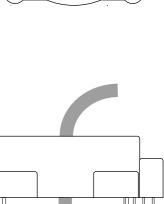
PCB mounting, Detect DC, AC and pulse current, High insulation between primary side and the vice side circuit.

Front view


Epoxy view

Epoxy view

Installation diagram


Product features

- ·Light weight
- •Low power consumption
- Good linearity
- No insertion loss
- Fast response time
- Good anti-interference ability

Product application

- Railway
- Metallurgical
- · Welding machine
- Robot
- Motor
- •Inverter power supply
- Variable frequency governor
- Uninterrupted power supply and communication power supply

Electrical parameters: (The following parameters are typical values and actual values will be subject to product testing)

		win be subject to product testing				
	Rated input	±200A	± 400 A	±600 A	±800A	Standard input can be customized example: 700A
M	Input measurement range	$\pm 300 A$	±600 A	±900 A	±1200A	The default is 1.5 times the rated input, Maximum ≤800A (saturation)
UT	Rated output	$2.5\text{V}\pm1.25\text{V}$				Other outputs can be customized example: 2.5V±1V 2.5V±2VEtc.
	Accuracy	1 %				I=Ib
	Linearity	1%				I=0 [~] ± IP
	Supply voltage	+5V				Supply voltage range±5% Other power supply shall be confirmed)
	Current consumption	15mA				Reference will be subject to the measured
,	Load impedance	≥10KΩ				Collection port impedance while lower voltage affect accuracy
Е	Zero offset voltage	\leqslant \pm 15mV				TA=25°C
	Response time	<3 μ s				Reference will be subject to the measured
V	Weight	53g				Reference will be subject to the measured
	Operation temperature	-10 \sim $+70$ $^{\circ}$ C				
	Storage temperature	-25∼+85°C				
	Band width	DC~25KHz				Factory test according to DC
	Delectric strength	2.5KV 50Hz 1min				

Factory commissioning:

IP
VOU
X
εL
VC
IC
RL
VOF
TR
N.W
Ta
Ts
BW

Calculation formula: 2.5V±1.25V 0V datum

Remarks:

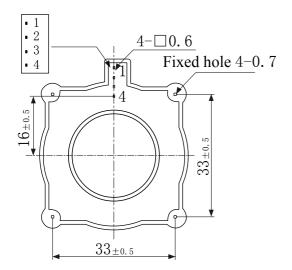
- 1. Debugging with 0V as the reference point(acquiescence) Forward direction: 2.5+ (I/IP) *1.25
- 2. Debug with Vref as the reference point(optional)

Reverse direction: 2.5- (I/IP) *1.25

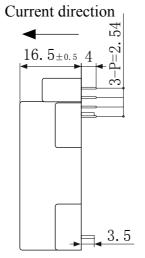
Instruction for use:

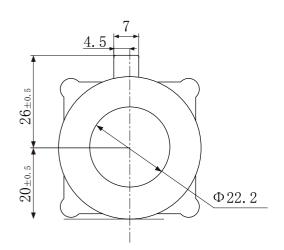
- 1. According to the connection mode of correct connection
- 2. The direction indicated by an arrow for the positive current direction
- 3. Response time and tracking progress are the best when the hole is measured
- 4. Faulty wiring can lead to product damage and output uncertainty

Safe operation:

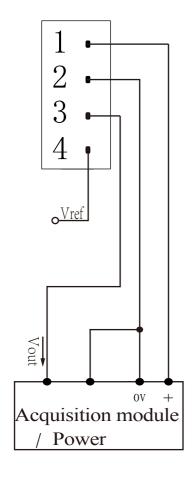

- *Please read this specification carefully before using the product.
- *When the product needs to be moved, please be sure to cut off the power and unplug all the connecting cables connected to it.
- *If found shell, fixed pieces, the power cord, connection cables, or connected to the equipment has any damage, please power off the device with immediately.
- *If running doubts about the safety of the equipment, all equipment must be switched off and the corresponding accessories, and in the fastest time of illness.

The statement:


As our products have been continuously improved and updated, we reserve the right to modify the content of this specification at any time.


Dimensions (in $mm_{\pm 0.5}$):

Bottom view



Side view

Top view

Wiring diagram :(based on 0V)

Stitch definition:

1: +V

2: 0V

3: Vout

4: Vref

(It can be suspended, not grounded)

X Detection:

①Choose the auxiliary power supply with small ripple ($\leq 10 \text{mV}$)

②Switch on auxiliary power

3)The auxiliary power is connected to the sensor

4)The sensor detects the primary current